
N91-10G15

. (..,"A Practical Approach to ObJect Based Requirements Analysis

Daniel W. Drew and Michael Bishop

Unisys, Houston Operations Division :
600 Gemini Mail Code UO4C

Houston, Tx. 77058-2775
(713)-282-3664

/

Introduction

In the teaching of mathematics, problem statements are often used to provide exercises which

require the students to apply the knowledge learned. The student must read a paragraph and

determine first what the problem is, then apply the appropriate equation to find the answer. System

development is analogous to solving math problem statements. There is the problem statement

(requirements) which must be understood so that the right equation (design) can be applied for the
sol ution.

If the study of mathematics emphasizes only the study of equations and how they are derived, the

student will be ill-equipped to use that knowledge in practical applications. Similarly, design

methods which do not have supporting methods for understandi ng requirements will prove difficult

to use in practical system development.

The use of objects in design methodologies has provided a mechanism whereby software engineers
can take fuller advantage of software engineering principles. However, these concept are just

beginning to reach their full potential aswe move them earlier into the lifecycle.

This paper presents an approach, developed at the U nisys Houston Operation Division, which

supports the early ideqtification of objects. This "domain oriented" analysis and development

concept is based on entity relationship modefing and object data flow diagrams. These modeling

techniques, based on the GOOD methodology developed at the Goddard Space Flight Center [4],

support the translation of requirements into objects which represent the real-world problem

domain. The goal is to establish a solid foundation of understanding before design begins, thereby,

giving greater assurance that the system will do what is desired by the customer. The transition from
requirements to object oriented design is also promoted by having requirements described in terms

of objects.

Presented is a five step process by which objects are identified from the requirements to create a

problem definition model. This process involves establishing a base line requirements list from which

an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the

identification of objects from the requirements.

The paper concludes with an example of how semantic modeling may be used to improve the entity-

relationship model and a brief discussion on how this approach might be used in a large scale

development effort.

D. Drew

Unisys
1 of 32

A Practical Approach to Object Based Requirements Analysis

1.0 Approach Overview

Following the principles of software engineering promotes a more pragmatic approach for system

development. It requires a change in the overall concepts of how systems are created as well as new

analysis and design methodologies.

1.1 Domain Oriented Development

Fora design to be successful, there must be an understanding of the problem it is intended to solve.

All too often problem definition is established in just enough detail to begin design and evolves as

the design evolves. This can lead to unstructured systems which are hard to implement and

expensive to maintain. To eliminate this problem software development can be divided into the

problem and solution domains. The problem domain provides the foundation for all solution

domain activities. A greater discipline is introduced into development giving greater assurance that

the requirements (problem) are understood before a design (solution) is attempted.

Activities included in the problem domain are requirements generation and requirements analysis.

The end product of requirements analysis is a problem definition model. This model becomes the
foundation for all solution domain activities.

Activities included in the solution domain are preliminary design, detail design, code, and test. The

end product is a delivered system which conforms to requirements.

DOMAIN - ORIENTED DEVELOPMENT

1.2 The Mechanics of Requirements Analysis

Requirement analysis is concerned with establishing what a system is to do. This information must

be documented in a form easily understood by all parties involved in development. The process for

understanding a set of requirements requires an ordered set of steps which clarify original
requirement statements and allow key information to be identified.

D. Drew

Unisys
2 of 32

A Practical Approach to Object Based Requirements Analysis

The remainder of this paper will show in detail an approach which is made up of the following steps:

Step 1 : Compile a notebook containi ng all requirement statements and information from

other sources which might be pertinent to the problem.

Step 2: Rewrite the information from the notebook into concisely stated sentences. This

establishes a baseline requirements list (BRL).

Step 3: Develop a static model of the problem from the BRL using entity relationship

modeling. This model will facilitate the identification of objects.

Step 4: Identify the objects and develop a dynamic model of the problem from the entity

relationship model using an object data flow diagram (ODD).

Step 5: Reorganize the BRL so that the statements are grouped by object.

SUPPORT FOR PROPER DESIGN

SOLUTION DOMAIN

CODE TESTI l DELIVERED SYSTEM

PROBLEM DOMAIN

A _D

T
I ,ROBLE I"C

MODEL I

I o°°I
I

i i

BF L

2.0 Step 1 : Compiling an Information Notebook

Complete requirements information is essential in order to create the system the customer really
wants. The purpose of step one is to gather all information which might have any possible bearing

on what the system is to do. The actual process for this step will vary as to the sources of information

available. For enti rely new development projects, this is the initial step of requirements generation.

Information must be compiled from many different sources. For enhancements to an existing

system, this step is the identification and collection of requirements pertinent to the enhancements.

Information sources would be the existing requirements document, design specifications, and

interviews of current users and maintenance personnel. The end result is to have all the information

available for design gathered in a single reference.

D. Drew

Unisys
3 of 32

A Practical Approach to Object Based Requirements Analysis

This approach was developed for a project which had an existing requirements document. The

document was old and the system had undergone several major revisions. The notebook contained

pages from the requirements document, information from a system closely related to the one being

redesigned, and notes given by experts in the application. The end result was a collection of all

available requirements information which then served as a single reference for analysis and design.

3.0 Step 2: Establishing a Baseline Requirements List

The resultant notebook contains all the information needed to create a model of what the system is

to do. However, there is no meaningful structure. It is very difficult to determine: if the information

is complete, if there is information that is not needed, or how the pieces of information relate to

each other. A good organization of requirements is necessary in order to facilitate the extraction of

entities, relationships, and attributes from the requirements and to develop the dynamic problem

domain definition. The Baseline Requirements List (BRL) provides this needed structure. Each
statement in the notebook is rewritten in a traditional "X shall Y" format where "X" is a noun or

noun phrase and "Y" is some action the noun will perform. Rewriting in this form will force a

greater understanding of each requirement piece. Ambiguous statements and statements which

have no impact on what the system is to do can be easily recognized. Having all requirements stated

as cause and effect also provide a solid platform for system testing.

ORGANIZE REQUIREMENTS INFORMATION

X SHALL Y

BRL XSHALLV

X SHALL Y

4.0 Step 3: Developing a Static Problem Definition Model

A static model of the problem is the first component of the problem definition model. Its purpose is

to give structure to the requirements information that will facilitate the identification of the

dynamic properties of the system. A static model represents all the possible entities, with their

attributes and relationships, described by the BRL. The development of a static model based on the

requirements is an information representation problem. Therefore, it is reasonable to borrow

modeling techniques from the DBMS world. Entity relationship modeling has been recommended

by Mike Stark and Ed Seidewitz of the Goddard Space Flight Center [4] and Dr. Charles McKay of the

University of Houston at Clear Lake [2] as an appropriate tool for the structuring of requirements
information.

D. Drew

Unisys
4 of 32

A Practical Approach to Object Based Requirements Analysis

Issues of completeness in requirements can be addressed with this model. Incomplete requirements

appear as dangling entities which have no relationships or as relationships without clearly deft ned

entities. An entity without relationships may also indicate a requirement statement which does not

belong to the problem. This type of inconsistency is identified and resolved in an iterative process of

reviewing the requirement statements which make up the part of the entity-relationship model in

question until all unusual model structures are resolved.

CREATE THE STATIC MODEL

J X SHALL Y_]

X SHALLY Jl

X SHALLY g

BRL

i NTIIV _1

I RELATIONSHIII

IATrRIBUTEg

E-R MODEL

4.1 Entity-relationship Modeling

The approach promoted by this paper for entity-relationship modeling consists of the entity-

relationship model creation phase, the entity dictionary, which provides entity definitions which will

be used throughout the software lifecycle, and entity-relationship diagrams, which can be used to

graphically depict portions of the entity dictionary. Object data-flow diagrams, which depict the

dynamic problem definition are generated from the entity-relationship model and will be addressed
in section 5.0. The remainder of this section presents in detail how an entity-relationship model is

developed from the BRL.

A common example, a subset of a student registration system, will be presented with most of the

topics in this section and in section 5 in order to help in understanding the concepts. The example

will have the following requirements:

1. The system shall provide the capability to enter and maintain information regarding students.

2. The system shall provide the capability to ehter and maintain information regarding the
courses in which students are enrolled.

3. Student information shall include the student's name, age, major and social security number.

, Course information shall include the course's name, department, room number, meeting time

and days, name of the professor teaching the course, a list of students enrolled in the course,

the number of students currently enrolled in the course and the maximum number of students
allowed in the course.

D. Drew

Unisys
5 of 32

A Practical Approach to Object Based Requirements Analysis

, A course shall be closed when the number of currently enrolled students reaches the

maximum number of students allowed in the course. Otherwise, the course shall be

considered open.

6. Students shall be allowed to enroll in an open course.

7. Students shall not be allowed to enroll in a closed course.

8. The system shall accept registration requests containing the name of a student and the name
of the course in which he/she wishes to enroll.

9. Registration requests shall be processed in order to determine whether or not a student may

enroll in the requested course.

4.2 Entity-Relationship Model Creation

The entity-relationship model creation phase consists of extracting entities, attributes and

relationships from the requirements. During this phase, the requirements are assumed to be in the
form of the BRL discussed in section 3.0.

4.2.1 Entity Extraction

Entities will appear as nouns in the requirement statements. Different types of noun phrases reveal

different types of entities [3]. Common nouns, such as "terminal", "student" or "message", name a

class of entities. Mass nouns and units of measure, such as "water", "matter" or "fuel", name a

quality, activity, quantity or substance of the same. Proper nouns and nouns of direct reference, such

as "my terminal", "George" or "syntax error advisory message", name specific instances of an entity
class.

The requirements will not necessarily name all of the entities in the problem domain. Related

entities may have to be found by looking through documentation, talking to people who have some

expertise in the area, etc. For example, suppose that the problem domain consists of a bucket

containing different types of fruit. The requirements may state that the job is to remove the apples

and oranges from the bucket and place them in different piles. The entities in this problem domain,

as shown by the requirements, are the apples, oranges and the bucket. However, there are other

kinds of fruit that have to be considered when removing the apples and oranges (i.e. they must be

discarded). Those other fruits are part of the problem domain and therefore are entities in the

problem domain.

There is another case in which entities are not explicitly named in the requirements. Suppose that

the requirements in the apples and oranges problem also state that someone is to be notified when

a spoiled apple is found in the bucket. This new requirement introduces two new entities, a spoiled

apple and a notification that a spoiled apple has been found. There is a gap in the problem domain

model between the spoiled apple and the notification of the spoiled apple. This gap is filled by an

entity that represents the event that is characterized by findi ng the spoiled apple. The event entity is

related to the notification entity in that someone is to be notified in the event that a spoiled apple is
found.

D. Drew

Unisys
6 of 32

A Practical Approach to Object Based Requirements Analysis

Entities are either internal or external. Internal entities have an existence only within the scope of

the problem domain. External entities have an existence outside the scope of the problem domain.

The concept of internal and external entities is easier to consider if the problem domain is thought of
as a "black box." Internal entities cannot be seen outside of the box but external entities can be seen

entering or leaving the box.

In the student registration example, the requirements yield the following entities:

From requirement 1" Student

From requirement 2: Course, Student

From requirement 3: Student

From requirement 4: Department, Professor, Course Roster, Course

From requirement 5: Course, Closed Course, Open Course, Student

From requirement 6: Student, OpenCourse

From requirement 7: Student, Closed Course

From requirement 8: RegistrationRequest

From requirement 9: Course, Registration Request, Student

The Course Roster in requirement 4 isthe list of students enrolled in a course.

4.2.2 Attribute Extraction

Attributes usually appear in the requirements as information concerning entities. The following

attributes are named in the requirements:

Student: Student Name, Age, Major, SS Number

Cou rse: Course Name, Current Size, Max Size, Time,

Days, Ro--om Number, Pr-ofessor Na--me, Department Name

Professor: Professor Name

Department: Department Name

RegistrationRequest: StudentName, CourseName

4.2.3 Relationship Extraction

Relationships appear in the requirements as associations between pairs of entities, entities and

attributes or relationships and attributes, The student registration requirements show the following

relationships:

Requirement 2: Is Enrolled In (l"m)
between Student and Course.

D. Drew

Unisys
7 of 32

A Practical Approach to Object Based Requirements Analysis

Requirement 4: Includes(1-1)/Is A Part Of(1:1)

between Course and Course Roster;

Includes(l:m)/Is A Part-Of(m:1)

between Department and Course, Professor;
Is A List Of(l:m)/Is A Member Of(m:1)

between Co-'urse Roste-ran_-Student;--

Teaches (l : l)/Is Taught By(l:1)
between Profess-or and Co'urse.

Requirement 5: Is A Type Of(l"1)

between Closed Course and Course,

between Open Course and Course;
Is An Instance Of(1"1)

between Course and Open Course or Closed Course.

Requirement 6: May Enroll In (l:m)

betwe--en Stu_-ent and OpenCourse.

Requirement 7: May Not Enroll In (l:m)
betwe--'en St'udent a-nd Closed Course.

Requi rement 9: References (1"1)/Is Referenced By (l:m)

between Registratio--n Request a'_d Student,

between RegistrationRequest and Course.

A slash between two relationship names indicates a pair of symmetric, oppositely-directed

relationships. In requirement 4, Course includes Course Roster and conversely, Course Roster is a
part of Course. The mapping class of the relationship is_-ndicated in parentheses.

4.3 Entity Dictionary

The entity dictionary provides a means of describing the entities that are part of the problem

domain. A data structure that is useful for representing the entity dictionary is the frame [4], a form

of knowledge representation developed by Marvin Minsky. A frame is a generalized property list

containing a list of symbols with their associated property names and values [5].

The following is an example of entity entries in the student registration entity dictionary.

Closed Course (Entity)

Rqmt Numbers5,7

Scope External

Is A Type Of Course

Course (Entity)

Attributes Course Name, Department Name, Room Number, Time, Days,
Profess_ Name, Current Si--ze,Max Size--

Rqmt Numbers 2, 4, 5, 9

Scope-External

IsTaught By Professor
Is A Pa_"- Of Department

Is An Instance Of Open Course, Closed Course

D. Drew

Unisys
8 of 32

A Practical Approach to Object Based Requirements Analysis

Isw Referenced_By RegistrationRequest
Includes Course Roster

Course Roster (Entity)

Rqmt Numbers4

Scope Internal
Is A Part Of Course

Is A List Of Student

Department (Entity)

Attributes Department Name
Rqmt Numbers4

Scope External
Includes Course, Professor

OpenCourse (Entity)
Rqmt Numbers 5,6

Scope External

Is A TypeiOfCourse

Professor (Entity)
Attributes Professor Name

Rqmt Numbers4

Scope External
Teaches Course

Is A Part Of Department

Registration Request (Entity)
Attributes Student Name, Course Name

Rqmt Numbers 8, 9

Scope Internal
References Student, Course;

Student (Entity)

Attributes Student Name, Age, Major, SS Number
Rqmt Numbers 1,-2, 3, 5, 6, 7, 9 u

Scope External
Is Enrolled In Course

Is A Member Of Course Roster

May Enroll In Open Course

May Not Enroll In Closed Course

Is R"e-fere_ed By--Registratio'--n Request

The entity dictionary can be extended to include attributes. The following is an example of some of

the attribute entries in the student registration entity dictionary.

Course Name (Attribute)
Is An Attribute Of Course

Rqmt Numbers 4,8

Domain String

Days (Attribute)
Is An Attribute Of Course

Rqmt Numbers4
D. Drew

Unisys
9 of 32

A Practical Approach to Object Based Requirements Analysis

Domain Character

Values M, T, W, R, F, MWF, TR, MW

Student Age(Attribute)
Is An Attribute Of Student

Rqmt Numbers3

Domain Integer

Range 16.. 100

Time (Attri bute)
Is An Attribute Of Course

Rqmt Numbers4
Domain Character

Length 5

Range 08:00.. 19:00

4.4 Entity-Relationship Diagrams

Entity-relationship diagrams are used to graphically depict a part of the problem domain. Attempts

were made to split the problem domain into parts by using a levelling technique in which the upper

levels in the problem domain consist of "aggregate entities" with the actual problem domain

entities at the lower levels. Unfortunately, there was not much progress in this endeavor and

therefore a single-level description of the problem domain was created. Since a diagram showing

the entire problem domain would be cumbersome, it is better to use the entity dictionary as the

problem domain definition with entity-relationship diagrams being generated to map parts needing

greater clarification. [4].

In the entity-relationship diagram, entities are represented by rectangles and relationships by

diamond-shaped boxes [1]. Attributes are listed next to the rectangle representing the entity. The

arrows indicate the direction of relationships. A double-h _ded arrow indicates the 1:m, m:l or m :n

mapping class.

Entity-relationship diagrams can be generated in order to graphically map the problem domain onto

one or more requirements or to show the problem domain from the perspective of a particular

entity. In the latter application, it is useful to state the "order" of the diagram. A first-order entity-

relationship diagram shows the central entity (the entity from whose perspective the problem

domain is being viewed) and its relationships to surrounding entities. A second-order diagram

shows the central entity, its relationships to surrounding entities and the relationships of each of the

surrounding entities to its surrounding entities.

Sample entity-relationship diagrams for the student registration system are shown in appendix A.

5.0 Step 4: Developing a Dynamic Problem Definition Model

The second and concluding component of the problem definition model is the dynamic model of the

problem. It is through this model that data flow and control, as described by the requirements, is

represented. An object data flow diagram (ODD) is used to model the dynamic properties of the

problem [4]. An ODD is very similar to a data flow diagram from Yourdon structured analysis

techniques. The chief difference lies in what the bubbles represent. For an ODD the bubbles are

objects. Since data is encapsulated in objects, there will not be any data stores.

D. Drew

Unisys
10 of 32

A Practical Approach to Object Based Requirements Analysis

The remainder of this section will present in detail how an ODD is derived from an entity-

relationship model.

CREATE THE DYNAMIC MODEL

I ENTITY

I II
I1

E-R MODEL
ODD

5.1 Identifying Problem Domain Objects

An object is a unique instance of an abstract data type which is a set of data and operations

associated with that data. In order to identify the objects in the problem domain, first find all of the

major abstract data types apparent in the problem domain and use an object to manage each one.

The abstract data types are represented by entities that do not have an Is A Type Of,

Is An Instance Of, Is A List Of or Is A Set Of relationship to another entity. These

entities are at the-highest level of a-bstraction for ent_es of a particular type. In the student

registration problem, those entities are Course, Department, Professor, Registration Request and

Student. Each one of these entity classes will have an object to manage it. These candidate objects

are CourseFolder, DepartmentFolder, Professor Folder, Registration and StudentFolder.

The next step is tofind all entity classes associated through the Is A Type Of, Is A List Of or
Is A Set Of relationship with the entity classes found in the f]-_t _-ep. In-t-heexample, --

Open Cour--'se and Closed Course are associated with Course through the Is A Type Of

relatio-nship and Course R-oster is associated with Student via the Is A List-- O-_-relati-o-nship. The

following objects and ass--ociated entities can be identified thus far: -- -- --

Course Folder: Course, Open Course, Closed Course

Department Folder: Department

Professor Folder: Professor

Registration: RegistrationRequest

Student Folder: Student, Course Roster

D. Drew

Unisys
11 of 32

A Practical Approach to Object Based Requirements Analysis

The entity classes listed for each object represent the abstract data types provided by that object. At

this poi nt, it is possible to determine the set of requirements satisfied by each object. This is done by

consulting the entity dictionary and finding the requirement statement numbers for each of the

entities associated with each object. Applying this process to the five objects in the student

registration system shows the requirements satisfied by each object:

Course Folder: Requirements 2, 4, S, 6, 7 and 9

DepartmentFolder: Requirement 4

Professor Folder: Requirement 4

Registration: Requirements 8 and 9

Student Folder: Requirements 1,2, 3, 4, 5, 6, 7 and 9

The requirement sets for each object are not disjoint. The shared requirements (numbers 2, 4, 5, 6, 7

and 9 in our example) describe the relationships between entities of different types. These

relationships, in turn, describe the interfaces between different objects.

In order to complete the definition of the problem domain objects, find all relationships between

entities of different types and add each member of the corresponding entity pairs to the appropriate

object. For example, because of the relationship "Student Is Enrolled In Course", there is an

interaction between the Student Folder and Course Fold"objects. T-o show this interaction, add

the entity Student to the Course Folder object and Course to Student Folder. One exception to

this procedure occurs when one-member of the entity pair is a generali_d entity class. An example

of this is the relationship"Student May Enroll In Open Course". Since "Open Course
Is A Type Of Course", add Courseto-Stude_- Folder'_stead of Open Course-- This procedure

results _n the_rollowing set of objects and associa_-d entities:

Course Folder: Course, Open Course, Closed Course, Course Roster, Student,

Department, Professor, Registration_Request

Department Folder: Department, Course, Professor

Professor Folder: Professor, Department, Course

Registration: Registration Request, Student, CourseStudent, Course Roster,

Course, RegistrationRequest

Having identified the problem domain objects and their associated entities, an object data-flow

diagram can be generated.

5.2 Generating Object Data-Flow Diagrams

Generating an object data-flow diagram based on a set of problem domain objects is simply a matter

of finding entities common to pairs of objects. For example, the entities that Course Folder and

Student Folder have in common are Student, Course Roster and Course. Those common entities

represent'interfaces between Course Folder and Stuc_nt Folder. On the object data-flow

diagram, the interfaces are represente--d by drawing a line b-etween the two rectangles representing

the objects and labeling the line with the names of the common entities. The object data-flow

diagram representing the objects from section 5.1 is in Appendix B.

D. Drew

Unisys
12 of 32

A Practical Approach to Object Based Requirements Analysis

The problem domain objects identified can be formally documented (in terms of the entities used

and produced) by adding them to the entity dictionary:

Course Folder (Object)

Rqmt Numbers 2, 4, 5, 6, 7, 9

Uses Department, CoursemRoster, Student, RegistrationRequest, Professor
Produces Course

Department Folder (Object)

Rqmt Numbers4
Uses _-ofesso r, Cou rse

Produces Department

Professor Folder (Object)

Rqmt Numbers4

Uses Department, Course
Produces Professor

Registration (Object)

Rqmt Numbers 8,9

Uses Student, Course

Produces Registration Request

Student Folder (Object)

Rqmt Numbers 1,2, 3, 4, 5, 6, 7,9

Uses Course, Registration Request
Produces Student, Course Roster

5.3 Object Names

The names given to objects play a key role in the development and understanding of the ODD.

Naming objects is possi bty the most difficult task in requirements analysis. The objects supply the

framework for the representation of information and the eventual design. Therefore, their names

must convey a concise meaning of the abstraction.

Object names are always nouns or noun phrases. This facilitates using the objects as a structure
which can be used to explain action. It should be obvious from the name what real world object is

represented. It is very difficult if not impossible to pick object names which do not bias design
toward a particular direction. Therefore, this fact must be understood and preconceived notions

must be addressed when a name is chosen. The name must be broad enough to encompass all the

details associated with an object. Operations found withi n an object should not contradict the

implied meaning of the object's name.

6.0 Step 5: Reorganization of the BRL

The entity-relationship model and ODD provide a complete problem definition model. Furthermore,

the ODD serves as a platform to launch into an object oriented design. The last step for the problem

domain segment of development is to go back and group the statements in the BRL under headings

which represent the objects they support.

D, Drew

Unisys
13 of 32

A Practical Approach to Object Based Requirements Analysis

The objects are the main organizational structure for the system. Re-grouping the requirements will

help the designers to find the additional detail needed to continue development. It will help the

testers create test procedures aligned along object boundaries. It will simplify the traceability of

requirements to design for the designer, tester, and maintainer. In short, having the requirements

document reflect the structure of the emerging design will provide a high level of continuity

throughout the system's lifecycle.

7.0 Enhancements to Problem Definition Modeling

Requirements analysis is a specific application of an information representation problem. As current

modeling techniques evolve, it is reasonable to expect improvements in the approach taken in

problem definition modeling. Semantic data models are currently being introduced for use in

modeling data bases. They provide a richer medium for the representation of information. This

section describes how semantic modeling can be used to enhance the entity relationship model.

Semantic data models allow designers to represent the entities of interest in an application in a way

that more closely resembles the view the user has of these entities [6]. Semantic data models provide

abstraction constructs that can be used to capture some of the meaning of the user application.

The semantic entity-relationship model introduced in this section features the abstraction constructs

provided by the semantic and hyper-semantic [6] data models and allows the analyst to further

define the problem by stating the meaning of relationships between entities in the problem domain.

7.1 Modeling Primitives

Modeling primitives are atomic relationships whose meanings cannot be defined as a composition of

other meanings. They form the basis on which other relationships can be defined. Modeling

primitives can be grouped into relationship classes which correspond to the abstraction constructs of

the hyper-semantic data model. The modeling constructs of the hyper-semantic data model and
their associated relationship names include [6]

Generalization: Similar entities are abstracted into a higher level entity-class. Relationship:
Is A Type Of.

Classification: Specific instances are considered as a higher level entity-class. Relationship:
Is An instance Of.

Aggregation: An entity is related to the components that make it up. Relationship:
Includes/Is A Part Of.

Set Membership: Several entities are considered as a higher level set entity-class.Relationships:
Is A Set Of/Is A Member Of.

List Membership: Several entities are considered as a higher level list entity-class.

Relationships:Is A List Of/Is A Member Of.

Constraint: A restriction is placed on some aspect of an entity or relationship. Relationship:
Is A Constraint On.

D. Drew

Vnisys
14 of 32

A Practical Approach to Object Based Requirements Analysis

Heuristic: An information derivation mechanism is attached. Relationship:
Is A Heuristic On.

Synchronous Temporal' Specific entities are related by synchronous characteristics and

considered asa higher-level entity-class. Relationships: Is A Predecessor Of/
Is A Successor Of.

Asynchronous Temporal: Specific entities are related by asynchronous characteristics and

considered as a higher-level entity-class. Relationships: Initiates/Is Initiated By.

Equivalence: Specific instances of an entity-class are asserted to be equivalent. Relationships:

Is Equivalent To.

The slash within the relationship names indicates two oppositely-directed relationships.

7.2 Semantic Relationship Definition

The semantic entity-relationship model provides a construct that allows the analyst to define the

meaning of a relationship. This construct can be used to define a relationship in terms of other

relationships and modeling primitives and to define the restriction class of a relationship.

A relationship between entity classes A and B is restricted if instances of type A may only be related

to certain instances of type B based on a condition. The relationshi p is existence restricted if

instances of type A may only to be related to those instances of type B for which they depend on
their existence [7].

In order to walk through a shorr _xample of a relationship definition, consider the ls Enrolled In

relationship between Student and Course. The objective isto state what is meant by the phrase, "a

student is enrolled in a course." The course roster may be used in order to determine if a particular
student is enrolled in a particular course. Remember from section 4.2 that a course roster is a list of

students enrolled in a course. Therefore, a student is enrolled in a course if the student is on the

course roster. The relationship is written in the following form using the semantic relationship
definition construct:

entity class Course, Student, Course Roster;

relationship Is Enrolled In (entity instance, entity instance);

Student Is Enrolled In Course if

CR Is An Instance Of Course Roster and

Course Includes CR and

Studentls A Member Of CR;

The relationship statement declares Is Enrolled In as a relationship between two entity instances.

Therefore, the definition of the Is Enr-olled In r-'elationship between Student and Course is
concerned with an instance of Stu-d-ent and a-n'instance of Course.

D. Drew

Unisys
15 of 32

A Practical Approach to Object Based Requirements Analysis

The first clause within the relationship definition, "CR Is An Instance Of Course Roster",

defines an entity CR which is an instance of entity class Course Roster. The second cl--ause, "Course

Includes CR", associates CR with the particular instance of Course with which the relationship is

invoked. The third clause states that the instance of Student with which the relationship is invoked

must be a member of the course roster CR in order for the Is Enrolled In relationship to be
satisfied. -- --

The relationship is invoked by replacing Student and Course with appropriate instances, for example

"George Is Enrolled in Physics". In this invocation of the relationship, CR is the course roster for

Physics and the relationship is satisfied if George is on that roster.

The semantic relationship definition construct can be thought of as "infix Prolog". In fact, it is rather

easy to convert the above example into Prolog:

is enrolled in (Student, Course):-

is an instance of(CR, Course Roster),

includes (Course, CR),

is a member of (Student, CR).

If one could "code" the model i ng primitives in Prolog and generate the appropriate Prolog

declarations, it would be possible to execute a problem domain model. This may be useful in

ensuring that the problem domai n model is correct before going on to create objects and initiate

design. This process is analogous to executing a design before implementation.

8.0 Considerations For Large Projects

This paper is based on a small project projected to be only 10,000 lines of code. An important

question to ask is, '°How will this approach support the development of a large system of 500,000
lines or greater?"

The basic approach is good for any size project. What complicates larger systems is the large number

of requirements to be considered. It may not be practical or even possible to examine all the

requirements at the same time as was done for this project.

To resolve this problem, approach the requirements as layers of abstraction. Read through the
document and extract those statements which define a very high level view of the system. Apply the

approach presented in this paper to produce a problem definition model for this high level

abstraction. Now begin an iterative process of stripping off layers of detail for each object identified

in the previous level of abstraction and create a problem definition model. Use the approach

presented in this paper for each iteration.

As each layer of abstraction is added to the model, check the preceding layer to assure that the

objects and interfaces already established still hold true. If there are inconsistencies, make the

necessary adjustments and continue with the process.

D. Drew

Unisys
16 of 32

A Practical Approach to Object Based Requirements Analysis

Summary

Students who spend all their time understanding math equations without applying them to problem

statements will be ill-equipped to solve real world problems. System developers who possess the

latest techniques in system design but have inadequate approaches to requirements analysis are

destined to create wonderful designs which solve the wrong problem. The approach in this paper is

a beginning to the application of modern analysis techniques rooted in the theoretical foundation

of software engineering. A pragmatic approach allows for better conformance to those
requirements in design. A model based on objects permits closer adherence to software

engineering principles earlier in the lifecycle. It is not always easy to see objects in the requirements.

Use of the entity-relationship model eases this problem by structuring the information in a form

more conducive to object recognition.

D. Drew

Unisys
17 of 32

A Practical Approach to Object Based Requirements Analysis

AppendixA. Sample Entity Relationship Diagrams

E°R DIAGRAM FOR STUDENT REGISTRATION REQUIREMENT 4

Depart- I
ment

11

Professor I

D. Drew
Unisys
18 of 32

Student
List

A Practical Approach to Object Based Requirements Analysis

First order diagram for entity Student

Student Name

Age
Major
SSmNumber I Student

I
I Student

List

 l'eg'stra" I.equestt,on

I_ ay
Enroll _,_

Course Open
Course

I Closed
Course

D. Drew
Unisys
19 of 32

A Practical Approach to Object Based Requirements Analysis

Second order diagram for entity Student

Student Name

Age
Major
SS Number _[Student

List

I Registra-
tion

Request

J

IV _y

D. Drew

Unisys
20 of 32

A Practical Approach to Object Based Requirements Analysis

Appendix B. Sample Object Data-Flow Diagram

Object data-flow diagram for student registration system

Depart-
ment

Folder

Professor,
Department

Course, Department

Course, Professor

I Course IFolder

t
Student List

tudent_"Course
Student
Folder

J-student, Course,

Registration
Request

Student,
Course,
Registration Request

Professor
Folder

Registra-
tion

D. Drew

Unisys
21 of 32

A Practical Approach to Object Based Requirements Analysis

References

[1] Chen, Peter P., "The Entity-Relationship Model - Toward a Unified View of Data", ACM
Transactions on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

[2] McKay, Charles W., "A Perspective and Overview of Software Engineering", a seminar
sponsored by the Software Engineering Research Center at the University of Houston at Clear
Lake.

[3] Booch, Grady, Software Engineering With Ada, Second Edition, The Benjamin/Cummings
Publishing Company, Inc., 1987.

[41 Stark, Mike and Seidewitz, Ed, "Towards A General Object-Oriented Ada Lifecycle", Goddard
Space Flight Center, Greenbelt, Md., March 1987.

[5] Winston, Patrick H. and Horn, Berthold K. P., Lisp, Addison-Wesley Publishing Company, 1981.

[6] Potter, Walter D. and Trueblood, Robert P., "Traditional, Semantic, and Hyper-Semantic
Approaches to Data Modeling", Computer, June 1988, pp. 53-63.

[7] Webre, Nell W., "An Extended Entity-Relationship Model And Its Use On A Defense Project",
Entity-Relationship Approach To Information Modeling And Analysis, ed. by Peter P. Chen,
Elsevier Science Publ ishing Corn pany, 1983.

D. Drew

Unisys
22 of 32

A Practical Approach to Object Based Requirements Analysis

Biographical Sketch

Daniel Drew has worked 13 years in the computer industry. After graduating with a B.S. degree in

Computer Science from Texas A&M University, he spent 10 years developing Supervisory, Control,

and Data Acquisition (SCADA) systems for oil pipeline control and automated oil field production.

He has spent the last three years in Aerospace as a system designer and currently as section

supervisor at the Unisys, Houston Operations Division. The section he supervises is working the first

Ada pilot project attempted at the Unisys Houston site. Mr. Drew is a member of the IEEE Computer

Society, Clear Lake Chapter of SigAda, and National SigAda.

Michael Bishop has worked as a programmer and systems analyst in the aerospace industry for over

four years. Mr Bishop is currently employed at the Unisys Houston Operation Division where he has

been developing an entity-relationship methodology suitable for a wide range of applications as

part of an Ada pilot project. Previously, Mr. Bishop worked at Ford Aerospace and Unisys on the

MAST project, a database application concerned with the management of Space Shuttle downlink
and uplink data. Mr. Bishop received his bachelor's degree in Computer Science in 1984 from the

University of Houston and is currently pursuing a master's degree at the University of Houston's Clear

Lake campus.

D. Drew

Unisys
23 of 32

THE VIEWGRAPH MATERIALS

FOR THE

D. DREW PRESENTATION FOLLOW

.................:.,-'F,_M_'D
R_E ,_ LT/ . .iNIENTiONAI_.Y 8LANK

t_

Z_
IJJ

O-
re

a_O'_
a_w>.

<_wZ
uw<_
--<:
U _
<
_U
a. uJ

,,.%

0

ILl
r_

iI
I.IJ
m

Z
<

,-- _....... _ i :_' _iLi_ED

D. Drew
Unisys
27 of 32

0

Z_
U

Oz

I.;.

0 z
0

I.Q
I--

>-

Q.I
n..
I.Ll

m

-.I
I.Q

_3

l-

ULl
I--

>
0

Z

0

I,LI

£
a.

D "t0
W

r

..I

_ o --
_8

W

D. Drew

Unisys
28 of 32

Z
0
m

uJ

.

' 1!IIIIIIIIIINt
IIIIIINIIIIIIIIIIII-

X X

I--
Z
!11

111
I--
<

!--
J Z
II1 ul

O

cA

>,
<{
Z
<

<
m

O

.Q
E

o
Z

D. Drew

Unisys
29 of 32

LIJ

U

..J
LIJ
c_
0

D. Drew

Unisys
30 of 32

l
II -J -J -J
II .J .=/ -J
II < < <
II -r -r -r
II (_ _o (0
U X X X

<(
Z
<(

I,I
_n
<
m

o

E

0
Z

I--
0
o

z
• • •

E

o
z

O D. Drew

Unisys
31 of 32

Ltl
Z
O
m

_ Z
° 0

m

I--

0

m

I-
Z

a,,
ul

0
i-

ra

!11
_J

0

0,,

m

Z

U

I--

Z
m

__J
tll

0

I,i,I

i_u

ilJ

I--

/

Z
0
m

!--

U
m

Z

0
U

Ill

0
0

Z
<{
!--
U'I
IX:
I,LI

_3
Z

>-
_J
m

l/1
<{
iJJ

I,/1
IX:
I,IJ

0
I--
t/t

U

tl it el el
D. Drew

Unisys
32 of 32

o

e*

o
O
Z

